Magnification Control in Self-Organizing Maps and Neural Gas
نویسندگان
چکیده
منابع مشابه
Magnification Control in Self-Organizing Maps and Neural Gas
We consider different ways to control the magnification in self-organizing maps (SOM) and neural gas (NG). Starting from early approaches of magnification control in vector quantization, we then concentrate on different approaches for SOM and NG. We show that three structurally similar approaches can be applied to both algorithms that are localized learning, concave-convex learning, and winner-...
متن کاملCartograms, Self-Organizing Maps, and Magnification Control
This paper presents a simple way to compensate the magnification effect of Self-Organizing Maps (SOM) when creating cartograms using CartoSOM. It starts with a brief explanation of what a cartogram is, how it can be used, and what sort of metrics can be used to assess its quality. The methodology for creating a cartogram with a SOM is then presented together with an explanation of how the magni...
متن کاملExplicit Magnification Control of Self-Organizing Maps for "Forbidden" Data
In this paper, we examine the scope of validity of the explicit self-organizing map (SOM) magnification control scheme of Bauer et al. (1996) on data for which the theory does not guarantee success, namely data that are n-dimensional, n > or =2, and whose components in the different dimensions are not statistically independent. The Bauer et al. algorithm is very attractive for the possibility o...
متن کاملusing game theory techniques in self-organizing maps training
شبکه خود سازمانده پرکاربردترین شبکه عصبی برای انجام خوشه بندی و کوانتیزه نمودن برداری است. از زمان معرفی این شبکه تاکنون، از این روش در مسائل مختلف در حوزه های گوناگون استفاده و توسعه ها و بهبودهای متعددی برای آن ارائه شده است. شبکه خودسازمانده از تعدادی سلول برای تخمین تابع توزیع الگوهای ورودی در فضای چندبعدی استفاده می کند. احتمال وجود سلول مرده مشکلی اساسی در الگوریتم شبکه خودسازمانده به حسا...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Computation
سال: 2006
ISSN: 0899-7667,1530-888X
DOI: 10.1162/089976606775093918